RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2009 Volume 160, Number 1, Pages 229–239 (Mi tmf6394)

This article is cited in 12 papers

Madelung fluid description of the generalized derivative nonlinear Schrödinger equation: Special solutions and their stability

A. Visinescua, D. Grecua, R. Fedeleb, S. De Nicolac

a National Institute for Physics and Nuclear Engineering
b Università degli Studi di Napoli Federico II
c Istituto di Cibernetica "Eduardo Caianiello"

Abstract: A correspondence between the families of generalized nonlinear Schrödinger (NLS) equations and generalized KdV equations was recently found using a Madelung fluid description. We similarly consider a special derivative NLS equation. We find a number of solitary waves and periodic solutions (expressed in terms of elliptic Jacobi functions) for a motion with a stationary profile current velocity. We study the stability of a bright solitary wave (ground state) by conjecturing that the Vakhitov–Kolokolov criterion is applicable.

Keywords: nonlinear partial differential equation, generalized nonlinear Schrödinger equation, generalized Korteweg–de Vries equation, Madelung fluid description.

DOI: 10.4213/tmf6394


 English version:
Theoretical and Mathematical Physics, 2009, 160:1, 1066–1074

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026