RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2009 Volume 160, Number 1, Pages 23–34 (Mi tmf6375)

This article is cited in 23 papers

Exact solutions of a generalized Boussinesq equation

M. S. Bruzón

Universidad de Cadiz

Abstract: We analyze a generalized Boussinesq equation using the theory of symmetry reductions of partial differential equations. The Lie symmetry group analysis of this equation shows that the equation has only a two-parameter point symmetry group corresponding to traveling-wave solutions. To obtain exact solutions, we use two procedures: a direct method and the $G'/G$-expansion method. We express the traveling-wave solutions in terms of hyperbolic, trigonometric, and rational functions.

Keywords: partial differential equation, symmetry, solution.

DOI: 10.4213/tmf6375


 English version:
Theoretical and Mathematical Physics, 2009, 160:1, 894–904

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026