RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2008 Volume 157, Number 2, Pages 163–174 (Mi tmf6272)

Explicit representation of the Green's function for the three-dimensional exterior Helmholtz equation

J. P. Cruz, E. L. Lakshtanov

University of Aveiro

Abstract: We construct a sequence of solutions of the exterior Helmholtz equation such that their restrictions form an orthonormal basis on a given surface. The dependence of the coefficients of these functions on the coefficients of the surface are given by an explicit algebraic formula. In the same way, we construct an explicit normal derivative of the Dirichlet Green's function. We also construct the Dirichlet-to-Neumann operator. We prove that the normalized coefficients are uniformly bounded from zero.

Keywords: explicit solution, Helmholtz exterior problem, Green's function, Dirichlet-to-Neumann operator.

Received: 30.01.2008

DOI: 10.4213/tmf6272


 English version:
Theoretical and Mathematical Physics, 2008, 157:2, 1503–1513

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026