RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2008 Volume 156, Number 2, Pages 292–302 (Mi tmf6248)

This article is cited in 40 papers

Description of weakly periodic Gibbs measures for the Ising model on a Cayley tree

U. A. Rozikova, M. M. Rakhmatullaevb

a Romanovskii Mathematical Institute of the National Academy of Sciences of Uzbekistan
b Namangam State University

Abstract: We introduce the concept of a weakly periodic Gibbs measure. For the Ising model, we describe a set of such measures corresponding to normal subgroups of indices two and four in the group representation of a Cayley tree. In particular, we prove that for a Cayley tree of order four, there exist critical values $T_{\mathrm{c}}<T_{\mathrm{cr}}$ of the temperature $T>0$ such that there exist five weakly periodic Gibbs measures for $0<T<T_{\mathrm{c}}$ or $T>T_{\mathrm{cr}}$, three weakly periodic Gibbs measures for $T=T_{\mathrm{c}}$, and one weakly periodic Gibbs measure for $T_{\mathrm{c}}<T\le T_{\mathrm{cr}}$.

Keywords: Cayley tree, Gibbs measure, Ising model, weakly periodic measure.

Received: 26.07.2007
Revised: 23.10.2007

DOI: 10.4213/tmf6248


 English version:
Theoretical and Mathematical Physics, 2008, 156:2, 1218–1227

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026