RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2008 Volume 156, Number 2, Pages 207–219 (Mi tmf6241)

This article is cited in 2 papers

Darboux-integrable discrete systems

V. L. Vereshchagin

Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences

Abstract: We extend Laplace's cascade method to systems of discrete “hyperbolic” equations of the form $u_{i+1,j+1}=f(u_{i+1,j},u_{i,j+1},u_{i,j})$, where $u_{ij}$ is a member of a sequence of unknown vectors, $i,j\in\mathbb Z$. We introduce the notion of a generalized Laplace invariant and the associated property of the system being “Liouville.” We prove several statements on the well-definedness of the generalized invariant and on its use in the search for solutions and integrals of the system. We give examples of discrete Liouville-type systems.

Keywords: Laplace's cascade method, Darboux integrability, nonlinear chain.

Received: 16.05.2007
Revised: 09.07.2007

DOI: 10.4213/tmf6241


 English version:
Theoretical and Mathematical Physics, 2008, 156:2, 1142–1153

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026