RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2008 Volume 155, Number 1, Pages 147–160 (Mi tmf6200)

This article is cited in 7 papers

Dual $R$-matrix integrability

T. V. Skrypnik

N. N. Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine

Abstract: Using the $R$-operator on a Lie algebra $\mathfrak{g}$ satisfying the modified classical Yang–Baxter equation, we define two sets of functions that mutually commute with respect to the initial Lie–Poisson bracket on $\mathfrak{g}^*$. We consider examples of the Lie algebras $\mathfrak{g}$ with the Kostant–Adler–Symes and triangular decompositions, their $R$-operators, and the corresponding two sets of mutually commuting functions in detail. We answer the question for which $R$-operators the constructed sets of functions also commute with respect to the $R$-bracket. We briefly discuss the Euler–Arnold-type integrable equations for which the constructed commutative functions constitute the algebra of first integrals.

Keywords: Lie algebra, classical $R$-matrix, classical integrable system.

DOI: 10.4213/tmf6200


 English version:
Theoretical and Mathematical Physics, 2008, 155:1, 633–645

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026