RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2008 Volume 154, Number 2, Pages 294–304 (Mi tmf6170)

This article is cited in 6 papers

Korteweg–de Vries hierarchy as an asymptotic limit of the Boussinesq system

S. A. Kordyukova

Ufa State Aviation Technical University

Abstract: For the model of surface waves, we perform an asymptotic analysis with respect to a small parameter $\varepsilon$ for large times where corrections to the approximation described by the Korteweg–de Vries equation must be taken into account. We reveal the appearance of the Korteweg–de Vries hierarchy, which ensures the construction of an asymptotic representation up to the times $t\approx\varepsilon^{-2}$, where the Korteweg–de Vries approximation becomes inapplicable.

Keywords: nonlinear equation, small parameter, potentiated Korteweg–de Vries equation, Lie–Bäcklund canonical operator, multiscale method, asymptotic representation, soliton.

Received: 06.03.2007

DOI: 10.4213/tmf6170


 English version:
Theoretical and Mathematical Physics, 2008, 154:2, 250–259

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026