RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2007 Volume 153, Number 1, Pages 98–123 (Mi tmf6124)

This article is cited in 2 papers

Interphase Hamiltonian and first-order phase transitions: A generalization of the Lee–Yang theorem

A. G. Basuev

St. Petersburg State University of Technology and Design

Abstract: We generalize the Pirogov–Sinai theory and prove the results applicable to first-order phase transitions in the case of both bulk and surface phase lattice models. The region of first-order phase transitions is extended with respect to the chemical activities to the entire complex space $\mathbb C^\Phi$, where $\Phi$ is the set of phases in the model. We prove a generalization of the Lee–Yang theorem: as functions of the activities, the partition functions with a stable boundary condition have no zeros in $\mathbb C^\Phi$.

Keywords: Pirogov–Sinai theory, multiphase contour model, interphase Hamiltonian, cluster expansion of the interphase Hamiltonian, contour equations, equation of state, phase diagram, fc-invariance of multiphase contour models.

Received: 29.09.2006
Revised: 20.03.2007

DOI: 10.4213/tmf6124


 English version:
Theoretical and Mathematical Physics, 2007, 153:1, 1434–1457

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026