RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2007 Volume 152, Number 1, Pages 163–176 (Mi tmf6078)

This article is cited in 8 papers

Abelian Chern–Simons vortices and holomorphic Burgers hierarchy

O. K. Pashaev, Z. N. Gurkan

Izmir Institute of Technology

Abstract: We consider the Abelian Chern–Simons gauge field theory in $2+1$ dimensions and its relation to the holomorphic Burgers hierarchy. We show that the relation between the complex potential and the complex gauge field as in incompressible and irrotational hydrodynamics has the meaning of the analytic Cole–Hopf transformation, linearizing the Burgers hierarchy and transforming it into the holomorphic Schrödinger hierarchy. The motion of planar vortices in Chern–Simons theory, which appear as pole singularities of the gauge field, then corresponds to the motion of zeros of the hierarchy. We use boost transformations of the complex Galilei group of the hierarchy to construct a rich set of exact solutions describing the integrable dynamics of planar vortices and vortex lattices in terms of generalized Kampe de Feriet and Hermite polynomials. We apply the results to the holomorphic reduction of the Ishimori model and the corresponding hierarchy, describing the dynamics of magnetic vortices and the corresponding lattices in terms of complexified Calogero–Moser models. We find corrections (in terms of Airy functions) to the two-vortex dynamics from the Moyal space–time noncommutativity.

Keywords: Chern–Simons gauge theory, Burgers hierarchy, noncommutative vortex, Ishimori model, holomorphic equation, Kampe de Feriet polynomial.

DOI: 10.4213/tmf6078


 English version:
Theoretical and Mathematical Physics, 2007, 152:1, 1017–1029

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026