RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2007 Volume 152, Number 1, Pages 147–156 (Mi tmf6076)

This article is cited in 49 papers

A hierarchy of integrable partial differential equations in $2{+}1$ dimensions associated with one-parameter families of one-dimensional vector fields

S. V. Manakova, P. M. Santinib

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b University of Rome "La Sapienza"

Abstract: We introduce a hierarchy of integrable partial differential equations in $2+1$ dimensions arising from the commutation of one-parameter families of vector fields, and we construct the formal solution of the associated Cauchy problems using the inverse scattering method for one-parameter families of vector fields. Because the space of eigenfunctions is a ring, the inverse problem can be formulated in three distinct ways. In particular, one formulation corresponds to a linear integral equation for a Jost eigenfunction, and another formulation is a scalar nonlinear Riemann problem for suitable analytic eigenfunctions.

Keywords: integrable system, inverse scattering transform, inverse spectral transformation, family of vector fields, nonlinear Riemann problem.

DOI: 10.4213/tmf6076


 English version:
Theoretical and Mathematical Physics, 2007, 152:1, 1004–1011

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026