RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2007 Volume 150, Number 3, Pages 355–370 (Mi tmf5984)

This article is cited in 1 paper

Elliptic hydrodynamics and quadratic algebras of vector fields on a torus

M. A. Olshanetsky

Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)

Abstract: We construct a quadratic Poisson algebra of Hamiltonian functions on a two-dimensional torus compatible with the canonical Poisson structure. This algebra is an infinite-dimensional generalization of the classical Sklyanin–Feigin–Odesskii algebras. It yields an integrable modification of the two-dimensional hydrodynamics of an ideal fluid on the torus. The Hamiltonian of the standard two-dimensional hydrodynamics is defined by the Laplace operator and thus depends on the metric. We replace the Laplace operator with a pseudodifferential elliptic operator depending on the complex structure. The new Hamiltonian becomes a member of a commutative bi-Hamiltonian hierarchy. In conclusion, we construct a Lie bialgebroid of vector fields on the torus.

Keywords: Euler hydrodynamic equation, ideal fluid, quadratic Poisson algebra.

Received: 08.06.2006

DOI: 10.4213/tmf5984


 English version:
Theoretical and Mathematical Physics, 2007, 150:3, 301–314

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026