RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1990 Volume 82, Number 1, Pages 143–154 (Mi tmf5402)

This article is cited in 5 papers

Mean-field models in the theory of random media. II

L. V. Bogachev, S. A. Molchanov


Abstract: A study is made of a stationary random medium described by the evolution equation $\partial\psi/\partial t=\varkappa\overline\Delta_V+\xi(\mathbf x)\psi$ where $\overline\Delta_V$ is the operator of mean-field diffusion in the volume $V\subset\mathbf Z^d$, $\xi(\mathbf x),\mathbf x\in V$, are independent random variables with normal distribution $\mathbf N(0,\sigma^2)$. A study is made of the asymptotic behavior of the solution $\psi(\mathbf x,t)$ and its statistical moments $m_p(\mathbf x,t)=\langle\psi^p(\mathbf x,t)\rangle$, $p=1,2,\dots$, as $t\to\infty$, $|V|\to\infty$. The paper continues the earlier [1].

Received: 03.10.1988


 English version:
Theoretical and Mathematical Physics, 1990, 82:1, 99–107

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026