RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1986 Volume 69, Number 2, Pages 245–258 (Mi tmf5223)

This article is cited in 4 papers

Debye screening in spatially inhomogeneous systems of charged particles. I. Model of spherical insulator

A. I. Pilyavskii, A. L. Rebenko


Abstract: In a medium with permittivity $\varepsilon$ there is a spherical insulator $\Omega_0$ of radius $R_0$ with permittivity $\varepsilon_0<\varepsilon$. A system of ions represented by charged impermeable spheres of radius $r_0$ whose distribution around the sphere $\Omega_0$ satisfies the Brydges–Federbush neutrality condition is considered. Initially, the system is in a finite volume $\Lambda$ (sphere of radius $R\gg R_0$), and the interaction satisfies a Dirichlet condition on $\partial\Lambda$. For sufficiently high values of the temperature convergence of the cluster expansions and existence of the distribution functions in the limit $R\to\infty$ ($\Lambda\nearrow\mathbb R^3$) are proved. It is established that there is exponential clustering of the distribution functions along the radial directions of the sphere $\Omega_0$ with a power-law decrease along the surface $\partial\Omega_0$.

Received: 16.01.1985
Revised: 25.05.1986


 English version:
Theoretical and Mathematical Physics, 1986, 69:2, 1127–1136

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026