RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1986 Volume 68, Number 2, Pages 265–275 (Mi tmf5178)

This article is cited in 3 papers

Virtual levels of $n$-particle systems

G. M. Zhislin


Abstract: The energy operators $H$ of unstable quantum systems $Z_1$ that do not possess stable subsystems are considered. It is shown that if the Hamiltonians of the subsystems in $Z_1$ do not have virtual levels but the operator $H$ does then a virtual level of the operator $H$ is due to the existence of a finitedimensional subspace of functions $\mathscr W=\{u\}\in\mathscr L_2^{(1)}$ such that the functions $u$ are generalized solutions of the Schrödinger equation $Hu=0$ and on the subspace orthogonal (in the gradient sense) to $\mathscr W$ the operator $H$ does not have virtual levels.

Received: 20.05.1985


 English version:
Theoretical and Mathematical Physics, 1986, 68:2, 815–823

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026