RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1988 Volume 76, Number 1, Pages 132–142 (Mi tmf5017)

This article is cited in 6 papers

On the stability of $N$-particle systems

S. A. Vugal'ter, G. M. Zhislin


Abstract: For a large class of $N$-particle boson and fermion systems we prove the existence of an increasing sequence of numbers $N_p$ such that the $N_p$ – particle system is stable, $p=1,2,\dots$. In addition, for fermions and any allowed symmetry type $\alpha$ sufficient condition is found for the existence of an increasing sequence of numbers $N_s(\alpha)$ such that a system of $N_s(\alpha)$ fermions has a bound state of symmetry $\alpha$.

Received: 13.11.1986


 English version:
Theoretical and Mathematical Physics, 1988, 76:1, 757–765

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026