RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2001 Volume 127, Number 3, Pages 379–387 (Mi tmf465)

This article is cited in 8 papers

Symmetries of the Discrete Nonlinear Schrödinger Equation

R. Hernandez Herederoa, D. Levib, P. Winternitzc

a Universidad Complutense, Departamento de Fisica Teorica II
b INFN — National Institute of Nuclear Physics
c Université de Montréal

Abstract: The Lie algebra $L(h)$ of point symmetries of a discrete analogue of the nonlinear Schrödinger equation (NLS) is described. In the continuous limit, the discrete equation is transformed into the NLS, while the structure of the Lie algebra changes: a contraction occurs with the lattice spacing $h$ as the contraction parameter. A five-dimensional subspace of $L(h)$, generated by both point and generalized symmetries, transforms into the five-dimensional point symmetry algebra of the NLS.

DOI: 10.4213/tmf465


 English version:
Theoretical and Mathematical Physics, 2001, 127:3, 729–737

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026