RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2001 Volume 127, Number 1, Pages 47–62 (Mi tmf448)

This article is cited in 2 papers

Symmetries of Systems of the Hyperbolic Riccati Type

A. A. Bormisov, F. Kh. Mukminov

Sterlitamak State Pedagogical Institute

Abstract: Let $\mathfrak G=\bigoplus_{i\in\mathbb Z}\mathfrak G_i$ be a Kac–Moody algebra, $U(x,y)$ be a function defined in $\mathfrak G_{-1}$, and $a$ be a constant element of $\mathfrak G_1$. We prove that the equation $U_{xy}=\bigl[[U,a],U_x\bigr]$ has two symmetry hierarchies connected by a gauge transformation. In particular, the well-known Konno equation appears in the case of the algebra $A_1^{(1)}$. The corresponding symmetry hierarchies contain the nonlinear Schrödinger and the Heisenberg magnet equations.

Received: 05.10.2000

DOI: 10.4213/tmf448


 English version:
Theoretical and Mathematical Physics, 2001, 127:1, 446–459

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026