RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2006 Volume 149, Number 2, Pages 228–243 (Mi tmf4229)

This article is cited in 18 papers

A discrete "three-particle" Schrödinger operator in the Hubbard model

Yu. Kh. Èshkabilov

National University of Uzbekistan named after M. Ulugbek

Abstract: In the space $L_2(T^ \nu \times T^\nu)$, where $T^\nu$ is a $\nu$-dimensional torus, we study the spectral properties of the "three-particle" discrete Schrödinger operator $\widehat H=H_0+H_1+H_2$, where $H_0$ is the operator of multiplication by a function and $H_1$ and $H_2$ are partial integral operators. We prove several theorems concerning the essential spectrum of $\widehat H$. We study the discrete and essential spectra of the Hamiltonians $H^{\mathrm{t}}$ and $\mathbf{h}$ arising in the Hubbard model on the three-dimensional lattice.

Keywords: discrete Schrödinger operator, Hubbard model, discrete spectrum of a discrete operator, essential spectrum of a discrete operator.

Received: 02.12.2003
Revised: 10.04.2006

DOI: 10.4213/tmf4229


 English version:
Theoretical and Mathematical Physics, 2006, 149:2, 1497–1511

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026