RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1970 Volume 3, Number 3, Pages 405–419 (Mi tmf4123)

This article is cited in 4 papers

Investigation of Feynman integrals by homological methods

V. A. Golubeva


Abstract: A study is made of the integral over $l$-dimensional sphere $\overline\Sigma$ of a meromorphic differential form that has poles on $m$ hyperplanes $\overline P_j$. This integral is a many-valued analytic function with discontinuities across the Landau variety $L$. A study is made of the discontinuities of the integral across $L$ and also the representation of $\pi_1(C^{m(l+1)}-L)$ on the homology group $H_{l^c}(\overline{\Sigma}-\displaystyle\bigcup_{j=1}^m(\overline{\Sigma}\bigcap\overline{P_j}))$ for the case $m=l+1, l+2$.

Received: 03.12.1969


 English version:
Theoretical and Mathematical Physics, 1970, 2:2, 604–615

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026