RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1975 Volume 24, Number 2, Pages 177–194 (Mi tmf3981)

This article is cited in 5 papers

Combinational analysis of the overlapping problem for vertices with more than four legs. II. Higher Legendre transforms

Yu. M. Pis'mak


Abstract: The properties of the graphs of the $m$-th Legendre transformation $\Gamma^{(m)}(\varepsilon_1,\dots,\varepsilon_m;A_{m+1},\dots,A_n)$ of the connected Green function generating functional ($\varepsilon_1,\dots,\varepsilon_m$ being dressed variables [7], $A_{m+1},\dots,A_n$ being bare ones) are considered. This gives an opportunity to find the explicite expression for the sum of all sceleton graphs included in the representation of; the dressed $k$-leg vertex, $k\leqslant m$, and containing nontrivial $l$-leg subgraphs, $l\leqslant k$.

Received: 25.02.1974


 English version:
Theoretical and Mathematical Physics, 1975, 24:2, 755–767

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026