Abstract:
We develop a classification scheme for integrable third-order scalar evolution equations using the symmetry approach to integrability. We use this scheme to study quasilinear equations of a particular type and prove that several equations that were suspected to be integrable can be reduced to the well-known Korteweg–de Vries and Krichever–Novikov equations via a Miura-type differential substitution.
Keywords:classification of integrable differential equations, formal symmetry approach, differential substitutions.