RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1973 Volume 16, Number 3, Pages 355–359 (Mi tmf3775)

Some properties of the double spectral function for dual amplitude with mandelstam analyticity $\operatorname{Re}\alpha(s)\eqslantless\operatorname{const}$

A. I. Bugrij


Abstract: A study is made of the asymptotic behavior of the dual amplitude with Mandelstam analyticity in the region of the double spectral function. It is shown that if the trajectory of a Regge pole is bounded by the condition $\operatorname{Re}\alpha(s)\eqslantless\operatorname{const}$as $s\to\infty$, the amplitude satisfies a Mandelstare representation with finitely many subtractions. The double spectral function takes its greatest value in strips along its boundaries.

Received: 01.09.1972


 English version:
Theoretical and Mathematical Physics, 1973, 16:3, 891–894

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026