RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1979 Volume 39, Number 3, Pages 347–352 (Mi tmf2853)

This article is cited in 8 papers

Close packing of rectilinear polymers on a square lattice

N. D. Gagunashvili, V. B. Priezzhev


Abstract: The set of close packings of rectilinear $r$-mers on a square lattice is considered. It is shown that the number of configurations of $r$-reefs on a lattice containing $N$ sites increases with increasing $N$ not slower than $\exp{\{4GN/\pi r^2\} }$ and not faster than $(r/2)^{N/r^2}\exp{\{4GN/\pi r^2\} }$ if $r$ is even and
$$ \biggl(\frac{r-1}{2}\biggr)^{N/r^2} \exp\biggl\{(N/\pi r^2)\int_0^{\pi} \operatorname{arch}\biggl(\frac{2r}{r-1}-\cos{\varphi}\biggr)\,d\varphi\biggr\}, $$
if $r$ is odd ($G$ is Catalan's constant).

Received: 08.06.1978


 English version:
Theoretical and Mathematical Physics, 1979, 39:3, 507–510

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026