RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2003 Volume 137, Number 2, Pages 188–192 (Mi tmf263)

This article is cited in 6 papers

Tritronquée Solutions of Perturbed First Painlevé Equations

N. Joshi

University of Sydney

Abstract: We consider solutions of the class of ODEs $y''=6y^2-x^{\mu}$, which contains the first Painlevé equation $($PI$)$ for $\mu=1$. It is well known that PI has a unique real solution (called a tritronquée solution) asymptotic to $-\sqrt{x/6}$ and decaying monotonically on the positive real line. We prove the existence and uniqueness of a corresponding solution for each real nonnegative $\mu\ne1$.

Keywords: Painlevé equations.

DOI: 10.4213/tmf263


 English version:
Theoretical and Mathematical Physics, 2003, 137:2, 1515–1519

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026