RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1980 Volume 42, Number 3, Pages 406–415 (Mi tmf2548)

Free energy in a one-dimensional spherical model with oscillating potential

L. V. Bogachev


Abstract: One-dimensional spherical model with slowly decreasing and oscillating potential of the form $\rho(r)=r^{-1}\sin\alpha r$ is considered. The dependence of the free energy upon the boundary conditions is studied. It turns out that in the case of zero (finite, in general) boundary conditions the free energy $\psi_0(\beta)$ is analytical for all $\beta>0$. In the case of periodical boundary conditions the free energy $\psi(\beta)$ coincides with $\psi_0(\beta)$ for small $\beta$'s. However at some points $\beta_c$ the new branches of the free energy arise. Therefore in this situation the standard method of analytical continuation from the domain of small $\beta$'s is not applicable so far as it does not catch the phase transition.

Received: 23.03.1979


 English version:
Theoretical and Mathematical Physics, 1980, 42:3, 267–273

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026