RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1983 Volume 57, Number 3, Pages 338–353 (Mi tmf2286)

This article is cited in 4 papers

Gas of “connected configurations” and allowance for the “hard-core” potential of contours in the Mayer expansion of a gas of lattice-model contours

A. G. Basuev


Abstract: A theorem is proved that makes it possible to take into account the “hard-core” potential of contours and reduce the study of the convergence of the Mayer expansions of the gas of contours to the remaining part of the interaction. In particular, for a model with nearest-neighbor interaction, in which
$$ U(\alpha)=\sum_{|x-y|=1}\varepsilon(\alpha(x)\alpha^{-1}(y)), $$
$\alpha(x)$ takes values in the discrete group $G$ with identity $e$, $\varepsilon(\alpha)=\varepsilon(\alpha^{-1})$ $\forall\alpha\ne e$, $\varepsilon(e)=0$ and
$$ \sum_{\alpha\in G\setminus e}\exp\{-\beta U(\alpha)\} \underset{\beta\to\infty}\longrightarrow0, $$
the existence is proved of not less than $|G|$ ($|G|\leqslant\infty$) limit Gibbs distributions, which are small perturbations of the ground states $\alpha(x)=\alpha_0\in G$.

Received: 22.02.1983


 English version:
Theoretical and Mathematical Physics, 1983, 57:3, 1178–1189

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026