RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1983 Volume 55, Number 3, Pages 349–360 (Mi tmf2174)

This article is cited in 6 papers

On a class of exact solutions of quasipotential equations

V. N. Kapshai, S. P. Kuleshov, N. B. Skachkov


Abstract: It is shown that quasipotentials equations [1, 2] can be reduced to second-order differential equations in the rapidity space if the quasipotentials are chosen in the form of functions that are local in the Lobachevskii momentum space, their images in the relativistic configuration representation being even functions of $r$. For quasipotentials of the form $V(r)\sim r^{-2}$, $(r^2\pm a^2)^{-1}$ in the chiral limit, when the mass of a bound state is equal to zero, exact wave functions are obtained.

Received: 22.07.1982


 English version:
Theoretical and Mathematical Physics, 1983, 55:3, 545–553

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026