RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2006 Volume 148, Number 2, Pages 309–322 (Mi tmf2088)

Spectra of infinite-dimensional sample covariance matrices

V. I. Serdobol'skii

Moscow State Institute of Electronics and Mathematics

Abstract: We study spectral functions of infinite-dimensional random Gram matrices of the form $RR^{\mathrm{T}}$, where $R$ is a rectangular matrix with an infinite number of rows and with the number of columns $N\to\infty$, and the spectral functions of infinite sample covariance matrices calculated for samples of volume $N\to\infty$ under conditions analogous to the Kolmogorov asymptotic conditions. We assume that the traces $d$ of the expectations of these matrices increase with the number $N$ such that the ratio $d/N$ tends to a constant. We find the limiting nonlinear equations relating the spectral functions of random and nonrandom matrices and establish the asymptotic expression for the resolvent of random matrices.

Keywords: spectra of random matrices, spectral functions of sample covariance matrices, spectra of infinite-dimensional random matrices.

Received: 28.11.2005

DOI: 10.4213/tmf2088


 English version:
Theoretical and Mathematical Physics, 2006, 148:2, 1135–1146

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026