RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1993 Volume 94, Number 1, Pages 160–164 (Mi tmf1998)

Invariant subspaces and generalization of Nagaoka's theorem for the Hubbard model $(U=\infty)$

A. V. Vedyaev, A. V. Volkov

M. V. Lomonosov Moscow State University

Abstract: The hubbard model $(U=\infty)$ on an arbitrary graph of sites in the presence of one hole in the system is considered. A sufficient condition for the absence of invariant subspaces of the space of states with fixed value of the $z$ projection of the total spin that differ in the sets of possible spin configurations is found. A generalization of Nagaoka's results for bilobate graphs is given.

Received: 11.02.1992


 English version:
Theoretical and Mathematical Physics, 1993, 94:1, 114–116

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026