RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2004 Volume 138, Number 2, Pages 225–245 (Mi tmf19)

This article is cited in 5 papers

Limiting Laws for Entrance Times of Critical Mappings of a Circle

A. A. Dzhalilov

A. Navoi Samarkand State University

Abstract: A renormalization group transformation $\mathbf R_1$ has a single stable point in the space of the analytic circle homeomorphisms with a single cubic critical point and with the rotation number $\rho={(\sqrt{5}-1)}/{2}$ (“the golden mean”). Let a homeomorphism $T$ be the $C^{1}$-conjugate of $T_{\xi_{0},\eta_{0}}$. We let $\{\Phi_n^{(k)}(t), \ n=\overline{1,\infty}\}$ denote the sequence of distribution functions of the time of the $k$th entrance to the $n$th renormalization interval for the homeomorphism $T$. We prove that for any $t\in\mathbb{R}^1$, the sequence $\{\Phi_n^{(1)}(t)\}$ has a finite limiting distribution function $\Phi_n^{(1)}(t)$, which is continuous in $\mathbb{R}^1$, and singular on the interval $[0,1]$. We also study the sequence $\bigl\{\Phi_{n}^{(k)}(t), \ n=\overline{1,\infty}\bigr\}$ for $k>1$.

Keywords: critical homeomorphism of a circle, distribution function of the entrance time, thermodynamic formalism.

Received: 13.03.2003

DOI: 10.4213/tmf19


 English version:
Theoretical and Mathematical Physics, 2004, 138:2, 190–207

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026