Abstract:
A study is made of a hierarchical model with spin values in a Grassmann algebra defined by a potential of general form. The action of the spin-block renormalization group in the space of Hamiltonians is reduced to a rational mapping of the space of coupling constants into itself. The methods of the theory of bifurcations are used to investigate the nontrivial fixed points of this mapping. A theorem establishing the existence of a thermodynamic limit of the model at these points in a certain neighborhood of a bifurcation value is proved.