RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 1996 Volume 108, Number 2, Pages 205–211 (Mi tmf1187)

This article is cited in 6 papers

Uniform asymptotic formulas for the curved solitons of the Kadomtsev–Petviashvili equations

D. Yu. Ostapenko, A. P. Pal-Val, E. Ya. Khruslov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine

Abstract: The special class of solutions of the Kadomtsev–Petviashvili equations is investigated in the limit $t\to \infty$. It's proved that these solutions split into infinite series of curved solitons in the neighbourhood of the leading edge. Parameters of these solitons depend on the variable $Y=y/t$. Uniform in $Y$ asymptotic formulas are obtained.

Received: 16.11.1995

DOI: 10.4213/tmf1187


 English version:
Theoretical and Mathematical Physics, 1996, 108:2, 1013–1018

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026