RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2004 Volume 141, Number 1, Pages 3–23 (Mi tmf113)

This article is cited in 16 papers

Factorization of the Loop Algebra and Integrable Toplike Systems

I. Z. Golubchika, V. V. Sokolovb

a Bashkir State Pedagogical University
b L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences

Abstract: With any Lie algebra of Laurent series with coefficients in a semisimple Lie algebra and its decomposition into a sum of the subalgebra consisting of the Taylor series and a complementary subalgebra, we associate a hierarchy of integrable Hamiltonian nonlinear ODEs. In the case of the $so(3)$ Lie algebra, our scheme covers all classical integrable cases in the Kirchhoff problem of the motion of a rigid body in an ideal fluid. Moreover, the construction allows generating integrable deformations for known integrable models.

Keywords: integrable nonlinear ODE, Lax pair, loop algebra.

Received: 12.01.2004
Revised: 04.03.2004

DOI: 10.4213/tmf113


 English version:
Theoretical and Mathematical Physics, 2004, 141:1, 1329–1347

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026