Abstract:
With any Lie algebra of Laurent series with coefficients in a semisimple Lie algebra and its decomposition into a sum of the subalgebra consisting of the Taylor series and a complementary subalgebra, we associate a hierarchy of integrable Hamiltonian nonlinear ODEs. In the case of the $so(3)$ Lie algebra, our scheme covers all classical integrable cases in the Kirchhoff problem of the motion of a rigid body in an ideal fluid. Moreover, the construction allows generating integrable deformations for known integrable models.