RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2026 Volume 226, Number 1, Pages 27–79 (Mi tmf11034)

Analogue of Goeritz matrices for computation of bipartite HOMFLY–PT polynomials

A. S. Anokhinaabc, D. V. Korzunde, E. N. Laninaabcde, A. Yu. Morozovabcd

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
b National Research Centre "Kurchatov Institute", Moscow, Russia
c Alikhanov Institute for Theoretical and Experimental Physics, Moscow. Russia
d Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
e Saint Petersburg State University, St. Petersburg, Russia

Abstract: The Goeritz matrix is an alternative to the Kauffman bracket and, in addition, makes it possible to calculate the Jones polynomial faster with some minimal choice of a checkerboard surface of a link diagram. We introduce a modification of the Goeritz method that generalizes the Goeritz matrix for computing the HOMFLY–PT polynomials for any $N$ in the special case of bipartite links. Our method reduces to purely algebraic operations on matrices, and therefore, it can easily be implemented as a computer program. Bipartite links form a rather large family, including a special class of Montesinos links constructed from the so-called rational tangles. We demonstrate how to obtain a bipartite diagram of such links and calculate the corresponding HOMFLY–PT polynomials using our developed generalized Goeritz method.

Keywords: Goeritz matrix, Jones polynomial, HOMFLY–PT polynomial, Kauffman bracket, bipartite link.

Received: 25.06.2025
Revised: 25.06.2025

DOI: 10.4213/tmf11034


 English version:
Theoretical and Mathematical Physics, 2026, 226:1, 21–65

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026