RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2025 Volume 225, Number 3, Pages 461–478 (Mi tmf11024)

On the smoothness of the solution of one nonlinear equation with gradient nonlinearity

A. K. Matveeva

Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

Abstract: We consider the Cauchy problem for a nonclassical third-order partial differential equation with gradient nonlinearity $|\nabla u(x,t)|^q$. A solution of this problem is understood in a certain weak sense. Using Schauder estimates, we show that a local-in-time weak solution of the Cauchy problem has a certain smoothness with $q>N/(N-1)$.

Keywords: Sobolev-type nonlinear equations, blow-up, local solvability, Schauder-type estimates, smoothness of solutions, weak solution.

PACS: 02.30.Jr, 02.30.Rz, 02.30.Em

MSC: 31B35, 35A05, 35B33,35B60,35B65,35M20

Received: 09.06.2025
Revised: 06.07.2025

DOI: 10.4213/tmf11024


 English version:
Theoretical and Mathematical Physics, 2025, 225:3, 2089–2104

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026