Abstract:
We construct an algebraic complex corresponding to a triangulation of a three-manifold starting with a classical solution of the pentagon equation, constructed earlier by the author and Martyushev and related to the flat geometry, which is invariant under the group $SL(2)$. If this complex is acyclic (which is confirmed by examples), we can use it to construct an invariant of the manifold.
Keywords:pentagon equation, Pachner moves, acyclic complexes, torsion, invariants of manifolds.