RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2025 Volume 224, Number 1, Pages 22–29 (Mi tmf10881)

This article is cited in 1 paper

Error estimates of the Galerkin method for a weakly solvable parabolic equation with a nonlocal-in-time condition for the solution

A. S. Bondarev, A. A. Petrova, O. M. Pirovskikh

Voronezh State University, Voronezh, Russia

Abstract: We consider the abstract linear parabolic equation with a nonlocal-in-time condition for an integral-type solution in a separable Hilbert space. The problem is solved approximately using the semidiscrete Galerkin method. Under conditions of weak solvability for the problem, we establish error estimates for an approximate solution. Under additional assumptions on the smoothness of the solution of the exact problem, we also obtain the convergence rate that is exact in the order of approximation for projection subspaces of finite-element type.

Keywords: parabolic equation, nonlocal-in-time condition, weak solvability, the Galerkin method.

MSC: 58D25, 35Kxx

Received: 31.12.2024
Revised: 31.12.2024

DOI: 10.4213/tmf10881


 English version:
Theoretical and Mathematical Physics, 2025, 224:1, 1119–1125

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026