RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2025 Volume 222, Number 3, Pages 487–506 (Mi tmf10821)

Solutions of a generalized constrained discrete KP hierarchy

Xuepu  Mua, Mengyao Chena, Jipeng Chengab, Jingsong Hec

a School of Mathematics, China University of Mining and Technology, Xuzhou, Jiangsu, China
b Jiangsu Center for Applied Mathematics (CUMT), Xuzhou, Jiangsu, China
c Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China

Abstract: Solutions of a generalized constrained discrete KP (gcdKP) hierarchy with the constraint $L^k=(L^k)_{\geq m}+\sum_{i=1}^lq_i\Delta^{-1}\Lambda^mr_i$ on the Lax operator are investigated by Darboux transformations $T_D(f)=f^{[1]}\cdot\Delta\cdot f^{-1}$ and $T_I(g)=(g^{[-1]})^{-1}\cdot\Delta^{-1}\cdot g$. Due to the special constraint on the Lax operator, it can be shown that the generating functions $f$ and $g$ of the corresponding Darboux transformations can only be chosen from {(}adjoint{\rm)} wave functions or $(L^k)_{<m}=\sum_{i=1}^lq_i\Delta^{-1}\Lambda^mr_i$. We discuss successive application of Darboux transformations for the gcdKP hierarchy. Solutions of the gcdKP hierarchy are obtained from $L^{\{0\}}=\Lambda$ by Darboux transformations, with a method that is highly nontrivial due to the special constraint on the Lax operator.

Keywords: discrete KP hierarchy, Darboux transformation, tau function.

PACS: 02.30.Ik

MSC: 35Q51, 35Q53, 37K10, 37K40

Received: 05.09.2024
Revised: 05.09.2024

DOI: 10.4213/tmf10821


 English version:
Theoretical and Mathematical Physics, 2025, 222:3, 414–431

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026