RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2025 Volume 222, Number 1, Pages 3–13 (Mi tmf10792)

This article is cited in 1 paper

Asymptotic integrability of nonlinear wave equations and the semiclassical limit of Lax pairs

A. M. Kamchatnov

Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia

Abstract: We introduce the concept of asymptotic integrability of nonlinear wave equations, which means the integrability of Hamilton equations describing the propagation of a high-frequency wave packet along a smooth profile whose dynamics obeys the dispersionless limit of the original equations. We show that this limit case of complete integrability allows expressing the semiclassical limit of Lax pairs in terms of the dispersion law for linear waves and an integral of the Hamilton equations for the packet. If the Lax pair does not depend on derivatives of the wave variables, then the semiclassical limit coincides with the exact expressions. We illustrate the theory with specific examples.

Keywords: solitons, Lax pairs, semiclassical approximation.

PACS: 02.30.Ik, 05.45.Yv, 43.20.Bi

Received: 17.07.2024
Revised: 17.07.2024

DOI: 10.4213/tmf10792


 English version:
Theoretical and Mathematical Physics, 2025, 222:1, 1–9

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026