RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2024 Volume 221, Number 2, Pages 315–330 (Mi tmf10650)

Nonlocal abstract Ginzburg–Landau-type equations and applications

V. B. Shakhmurovab

a Antalya Bilim University, Department of Industrial Engineering, Dosemealti, Antalya, Turkey
b Analytical Information Resources Center, Azerbaijan State University of Economics, Baku, Azerbaijan

Abstract: We study a nonlocal abstract Ginzburg–Landau type equation. The equation includes variable coefficients with convolution terms and an abstract linear operator function $A$ in a Fourier-type Banach space $E$. For sufficiently smooth initial data, assuming growth conditions for the operator $A$ and the coefficient $a$, the existence and uniqueness of the solution and the $L^p$ -regularity properties are established. We obtain the existence and uniqueness of the solution, and the regularity of different classes of nonlocal Ginzburg–Landau-type equations by choosing the space $E$ and operator $A$ that occur in a wide variety of physical systems.

Keywords: diffusion equations, Ginzburg–Landau equation, dissipative operators, embedding in Sobolev and Besov spaces, $L^p$-regularity property of solutions, Fourier multipliers.

MSC: 35B40, 35B41, 35Q35, 37Lxx, 82C26

Received: 04.12.2023
Revised: 02.05.2024

DOI: 10.4213/tmf10650


 English version:
Theoretical and Mathematical Physics, 2024, 221:2, 1867–1881

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026