RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2024 Volume 219, Number 1, Pages 3–11 (Mi tmf10626)

Cauchy problem for a nonlinear Schrödinger equation with a large initial gradient in the weakly dispersive limit

S. V. Zakharov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia

Abstract: We consider the Cauchy problem for the cubic nonlinear Schrödinger equation with a large gradient of the initial function and a small dispersion parameter. The renormalization method is used to construct an asymptotic solution in the explicit form of integral convolution. An asymptotic analogue of the renormalization group property is established under scaling transformations determined by the dispersion parameter. In the case of a negative focusing coefficient, a clarifying expression is obtained for the asymptotic solution in terms of known elliptic special functions.

Keywords: cubic nonlinear Schrödinger equation, Cauchy problem, renormalization, asymptotic solution, elliptic functions.

Received: 18.10.2023
Revised: 22.11.2023

DOI: 10.4213/tmf10626


 English version:
Theoretical and Mathematical Physics, 2024, 219:1, 531–538

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026