RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2023 Volume 217, Number 2, Pages 438–451 (Mi tmf10562)

This article is cited in 1 paper

Symmetry transformations of the vortex field statistics in optical turbulence

V. N. Grebeneva, A. N. Grishkovb, S. B. Medvedeva

a Federal Research Center for Information and Computational Technologies, Novosibirsk, Russia
b Universidade de São Paulo, Instituto de Matemática e Estatística, São Paulo, Brazil

Abstract: We use the concept of gauge transformations in the proof of the invariance of the statistics of zero-vorticity lines in the case of the inverse energy cascade in wave optical turbulence; we study it in the framework of the hydrodynamic approximation of the two-dimensional nonlinear Schrödinger equation for the weight velocity field $\mathbf u$. The multipoint probability distribution density functions $f_n$ of the vortex field $\Omega=\nabla\times\mathbf u$ satisfy an infinite chain of Lundgren–Monin–Novikov equations {(}statistical form of the Euler equations{\rm)}. The equations are considered in the case of the external action in the form of white Gaussian noise and large-scale friction, which makes the probability distribution density function statistically stationary. The main result is that the transformations are local and conformally transform the $n$-point statistics of zero-vorticity lines or the probability that a random curve $\mathbf x(l)$ passes through points $\mathbf x_i\in\mathbb R^2$ for $l=l_i$, $i=1,\dots,n$, where $\Omega=0$, is invariant under conformal transformations.

Keywords: optical turbulence, $n$-point statistics of a vortex field, Lundgren–Monin–Novikov equations, gauge transformations, conformal invariance.

PACS: 42.25.Bs, 42.68.Bz

MSC: 36B06, 65D17, 76B1, 58J70

Received: 06.06.2023
Revised: 26.06.2023

DOI: 10.4213/tmf10562


 English version:
Theoretical and Mathematical Physics, 2023, 217:2, 1795–1805

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026