RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2024 Volume 218, Number 2, Pages 280–305 (Mi tmf10550)

This article is cited in 2 papers

Stabilization of the statistical solutions for large times for a harmonic lattice coupled to a Klein–Gordon field

T. V. Dudnikova

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia

Abstract: We consider the Cauchy problem for the Hamiltonian system consisting of the Klein–Gordon field and an infinite harmonic crystal. The dynamics of the coupled system is translation-invariant with respect to the discrete subgroup $\mathbb{Z}^d$ of $\mathbb{R}^d$. The initial date is assumed to be a random function that is close to two spatially homogeneous (with respect to the subgroup $\mathbb{Z}^d$) processes when $\pm x_1>a$ with some $a>0$. We study the distribution $\mu_t$ of the solution at time $t\in\mathbb{R}$ and prove the weak convergence of $\mu_t$ to a Gaussian measure $\mu_\infty$ as $t\to\infty$. Moreover, we prove the convergence of the correlation functions to a limit and derive the explicit formulas for the covariance of the limit measure $\mu_\infty$. We give an application to Gibbs measures.

Keywords: Klein–Gordon field coupled to a harmonic crystal, Zak transform, random initial data, Gaussian and Gibbs measures, weak convergence of measures.

Received: 30.05.2023
Revised: 30.05.2023

DOI: 10.4213/tmf10550


 English version:
Theoretical and Mathematical Physics, 2024, 218:2, 241–263

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026