RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2023 Volume 215, Number 3, Pages 437–464 (Mi tmf10423)

This article is cited in 4 papers

A type of multicomponent nonisospectral generalized nonlinear Schrödinger hierarchies

Jianduo Yua, HaiFeng Wangb, Chuanzhong Lic

a School of Mathematics and Statistics, Ningbo University, Ningbo, China
b School of Science, Jimei University, Xiamen, China
c College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, China

Abstract: We introduce a Lie algebra $A_1$ with an arbitrary constant $\alpha$ that can be used to solve nonisospectral problems. For a given higher-dimensional Lie algebra, we introduce two new classes of higher-dimensional Lie algebras extended by $A_1$. By solving the extended nonisospectral zero-curvature equations that correspond to nonisospectral problems, we derive several multicomponent nonisospectral hierarchies. For one of them, with the aid of the $Z^\varepsilon_N$-trace identity and given the Lax pairs, we obtain the bi-Hamilton structures.

Keywords: multicomponent nonisospectral hierarchy, $Z^\varepsilon_N$-trace identity, bi-Hamiltonian structure, nonisospectral problem.

MSC: 35Q55, 37K30

Received: 08.12.2022
Revised: 08.12.2022

DOI: 10.4213/tmf10423


 English version:
Theoretical and Mathematical Physics, 2023, 215:3, 837–861

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026