Abstract:
We introduce a Lie algebra $A_1$ with an arbitrary constant $\alpha$ that can be used to solve nonisospectral problems. For a given higher-dimensional Lie algebra, we introduce two new classes of higher-dimensional Lie algebras extended by $A_1$. By solving the extended nonisospectral zero-curvature equations that correspond to nonisospectral problems, we derive several multicomponent nonisospectral hierarchies. For one of them, with the aid of the $Z^\varepsilon_N$-trace identity and given the Lax pairs, we obtain the bi-Hamilton structures.