RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2023 Volume 214, Number 2, Pages 318–328 (Mi tmf10353)

Gibbs measures for the Potts model with a countable set of spin values on a Cayley tree

G. I. Botirovab, Z. E. Mustafoevaa

a Romanovskiy Institute of Mathematics, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
b Ulugbek National University of Uzbekistan, Tashkent, Uzbekistan

Abstract: We consider an infinite system of functional equations for the Potts model with competing interactions of radius $r=2$ and countable spin values $\Phi=\{0,1,\ldots,\}$ on the Cayley tree of order $k=2$. We reduce the problem to the description of the solutions of some infinite system of equations for any $k=2$ and any fixed probability measure $\nu$ with $\nu(i)>0$ on the set of all nonnegative integer numbers. We also give a description of the class of measures $\nu$ on $\Phi$ such that the infinite system of equations has unique solution $\{a^i,\,i=1,2,\ldots\}$, $a\in(0,1)$, with respect to each element of this class.

Keywords: Cayley tree, Potts model, Gibbs measure, functional equation.

MSC: 82B20, 82B26

Received: 17.08.2022
Revised: 26.09.2022

DOI: 10.4213/tmf10353


 English version:
Theoretical and Mathematical Physics, 2023, 214:2, 273–281

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026