RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2022 Volume 212, Number 3, Pages 327–339 (Mi tmf10306)

This article is cited in 2 papers

On the blowup of solutions of the Cauchy problem for nonlinear equations of ferroelectricity theory

M. O. Korpusov, R. S. Shafir

Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia

Abstract: We study two Cauchy problems for nonlinear equations of the Sobolev type, of the form $ \frac{\partial}{\partial t}\frac{\partial^2u}{\partial x_3^2} + \Delta u=|u|^q $ and $ \frac{\partial}{\partial t}\Delta_{\perp}u + \Delta u= |u|^q$. We find conditions under which weak generalized local-in-time solutions of the Cauchy problem exist, and we also find conditions under which solutions blow up.

Keywords: Sobolev-type nonlinear equations, blowup, local solvability, nonlinear capacity.

PACS: 02.30.Jr

MSC: 35Q60

Received: 28.04.2022
Revised: 28.04.2022

DOI: 10.4213/tmf10306


 English version:
Theoretical and Mathematical Physics, 2022, 212:3, 1169–1180

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026