RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2022 Volume 213, Number 2, Pages 214–233 (Mi tmf10286)

Symmetries of the multicomponent $q$-KP hierarchy on a Grassmannian

Chuanzhong Lia, Qian Chaob

a College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, China
b School of Mathematics and Statistics, Ningbo University, Ningbo, China

Abstract: Based on the study of quantum calculus, we construct a multicomponent $q$-KP hierarchy and its additional symmetries. The additional symmetries form a multifold $W_{1+\infty}$ algebra and the generating operator of the additional symmetries can be shown to have a concise form in terms of wave functions. Furthermore, the string equation and the action of additional symmetries of the multicomponent $q$-KP hierarchy on the Grassmannian are considered. After quantization, we derive the corresponding quantum torus symmetry, whose flows constitute an interesting multifold quantum torus type Lie algebra.

Keywords: multicomponent $q$-KP hierarchy, additional symmetry, Grassmannian, quantum torus Lie algebra.

MSC: 37K05, 37K10, 35Q53

Received: 14.03.2022
Revised: 14.03.2022

DOI: 10.4213/tmf10286


 English version:
Theoretical and Mathematical Physics, 2022, 213:2, 1495–1512

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026