RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2022 Volume 211, Number 3, Pages 491–501 (Mi tmf10245)

This article is cited in 3 papers

Gibbs measures for the HC Blume–Capel model with countably many states on a Cayley tree

N. N. Ganikhodzhaeva, U. A. Rozikovabc, N. M. Khatamovad

a Romanovskii Institute for Mathematics, UzAS, Tashkent, Uzbekistan
b AKFA University, Tashkent, Uzbekistan
c Ulugbek National University of Uzbekistan, Tashkent, Uzbekistan
d Namangan State University, Namangan, Uzbekistan

Abstract: We study the Blume–Capel model with a countable set $\mathbb Z$ of spin values and a force $J\in \mathbb R$ of interaction between the nearest neighbors on a Cayley tree of order $k\geq 2$. The following results are obtained. Let $\theta=e^{-J/T}$, $T>0$, be the temperature. For $\theta\geq1$, there exist no translation invariant Gibbs measures or $2$-periodic Gibbs measures. For $0<\theta<1$, we prove the uniqueness of a translation-invariant Gibbs measure. Let $\Theta=\sum_i\theta^{(k+1)i^2}$ and $\Theta_\mathrm{cr}(k)=k^k/(k-1)^{k+1}$. If $0<\Theta\leq\Theta_\mathrm{cr}$, then there exists exactly one $2$-periodic Gibbs measure that is translation invariant. For $\Theta>\Theta_\mathrm{cr}$, there exist exactly three $2$-periodic Gibbs measures, one of which is a translation-invariant Gibbs measure.

Keywords: Cayley tree, HC Blume–Capel model, Gibbs measure.

Received: 10.01.2022
Revised: 10.01.2022

DOI: 10.4213/tmf10245


 English version:
Theoretical and Mathematical Physics, 2022, 211:3, 856–865

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026