RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2021 Volume 208, Number 2, Pages 355–364 (Mi tmf10100)

This article is cited in 3 papers

Quadratic algebras based on $SL(NM)$ elliptic quantum $R$-matrices

I. A. Sechinab, A. V. Zotovac

a National Research University "Higher School of Economics", Moscow, Russia
b Center for Advanced Studies, Skolkovo Institute of Science and Technology, Moscow, Russia
c Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia

Abstract: We construct a quadratic quantum algebra based on the dynamical $RLL$-relation for the quantum $R$-matrix related to $SL(NM)$-bundles with a nontrivial characteristic class over an elliptic curve. This $R$-matrix simultaneously generalizes the elliptic nondynamical Baxter–Belavin and the dynamical Felder $R$-matrices, and the obtained quadratic relations generalize both the Sklyanin algebra and the relations in the Felder–Tarasov–Varchenko elliptic quantum group, which are reproduced in the respective particular cases $M=1$ and $N=1$.

Keywords: quantum quadratic algebras, elliptic integrable system, quantum dynamical $R$-matrix.

Received: 25.03.2021
Revised: 25.03.2021

DOI: 10.4213/tmf10100


 English version:
Theoretical and Mathematical Physics, 2021, 208:2, 1156–1164

Bibliographic databases:
ArXiv: 2104.04963


© Steklov Math. Inst. of RAS, 2026