RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2021 Volume 208, Number 2, Pages 245–260 (Mi tmf10079)

Integrable extensions of classical elliptic integrable systems

M. A. Olshanetskyabc

a Alikhanov Institute for Theoretical and Experimental Physics of National Research Center "Kurchatov Institute", Moscow, Russia
b Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow, Russia
c Moscow Institute for Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia

Abstract: In this article we consider two particular examples of general construction proposed in arXiv:2012.15529. We consider the integrable extensions of the classical elliptic Calogero-Moser model of N particles with spin and the integrable Euler-Arnold top related to the group SL(N,C). The extended systems has additional N-1 degrees of freedom and can be described in terms of the Darboux variables.

Keywords: Hitchin systems, Calogero–Moser model, Euler–Arnold top.

Received: 22.02.2021
Revised: 27.02.2021

DOI: 10.4213/tmf10079


 English version:
Theoretical and Mathematical Physics, 2021, 208:2, 1061–1074

Bibliographic databases:
ArXiv: 2103.10099


© Steklov Math. Inst. of RAS, 2026